當(dāng)前位置: 網(wǎng)校> 高中教育培訓(xùn)> 高三講座
簡(jiǎn)單網(wǎng)校 高中教育培訓(xùn)

高三講座

發(fā)布時(shí)間:2018年01月07日

高中網(wǎng)校推薦:簡(jiǎn)單學(xué)習(xí)網(wǎng)

高中網(wǎng)校哪個(gè)好?最近很多同學(xué)都在找好一點(diǎn)的高中網(wǎng)校,小編根據(jù)同學(xué)口碑、師資、課程、服務(wù)、售后等等推薦一家高中網(wǎng)校:簡(jiǎn)單學(xué)習(xí)網(wǎng)。簡(jiǎn)單學(xué)習(xí)網(wǎng)成立于2007年,注冊(cè)學(xué)員累計(jì)2300萬(wàn),是國(guó)內(nèi)學(xué)生口碑不錯(cuò)的高中網(wǎng)校,現(xiàn)在課程開(kāi)設(shè)高中各年級(jí)26個(gè)教材版本的課程!建議同學(xué)們先試聽(tīng)課程體驗(yàn)一下。免費(fèi)領(lǐng)取全科精品課>>

高中課程免費(fèi)試聽(tīng)

熱門(mén)課程推薦

  • 高一數(shù)學(xué)同步課程

    主講老師:
    孫明杰等

    互動(dòng)視頻課、配套講義、快速答疑、智能錯(cuò)題本、家長(zhǎng)報(bào)告

    更多課程>>
  • 高二英語(yǔ)同步課程

    主講老師:
    麻雪玲等

    互動(dòng)視頻課、配套講義、快速答疑、智能錯(cuò)題本、家長(zhǎng)報(bào)告

    更多課程>>
  • 高三英語(yǔ)沖刺課程

    主講老師:
    麻雪玲、張毅豪等

    互動(dòng)視頻課、配套講義、快速答疑、智能錯(cuò)題本、家長(zhǎng)報(bào)告。

    更多課程>>
學(xué)員權(quán)益

簡(jiǎn)單學(xué)習(xí)網(wǎng)高中課程優(yōu)勢(shì)

  • 好老師

    優(yōu)秀老師授課

    老師傳授典型題詳細(xì)辦法

    教學(xué)生舉一反三
    一題多解、一題巧解

  • 錯(cuò)題本

    智能錯(cuò)題本復(fù)習(xí)

    錯(cuò)題追蹤復(fù)習(xí)

    聽(tīng)課中的錯(cuò)題能自動(dòng)加入錯(cuò)題本
    課后可方便復(fù)習(xí)及導(dǎo)出錯(cuò)題本

  • 網(wǎng)絡(luò)答疑

    網(wǎng)絡(luò)快速答疑

    課程互動(dòng)性強(qiáng)

    在線(xiàn)互動(dòng)問(wèn)答
    數(shù)理化英快速答疑

  • 課后練習(xí)

    經(jīng)典例題練習(xí)

    經(jīng)典例題課后練習(xí)

    老師針對(duì)課堂中的經(jīng)典例題
    為學(xué)生推送同類(lèi)型題,掌握解題方法

免費(fèi)試聽(tīng)

學(xué)習(xí)資料

  一 函數(shù)的值域與最值

  1、函數(shù)的值域取決于定義域和對(duì)應(yīng)法則,不論采用何種方法求函數(shù)值域都應(yīng)先考慮其定義域,求函數(shù)值域常用方法如下:

  (1)直接法:亦稱(chēng)觀察法,對(duì)于結(jié)構(gòu)較為簡(jiǎn)單的函數(shù),可由函數(shù)的解析式應(yīng)用不等式的性質(zhì),直接觀察得出函數(shù)的值域.

  (2)換元法:運(yùn)用代數(shù)式或三角換元將所給的復(fù)雜函數(shù)轉(zhuǎn)化成另一種簡(jiǎn)單函數(shù)再求值域,若函數(shù)解析式中含有根式,當(dāng)根式里一次式時(shí)用代數(shù)換元,當(dāng)根式里是二次式時(shí),用三角換元.

  (3)反函數(shù)法:利用函數(shù)f(x)與其反函數(shù)f-1(x)的定義域和值域間的關(guān)系,通過(guò)求反函數(shù)的定義域而得到原函數(shù)的值域,形如(a≠0)的函數(shù)值域可采用此法求得.

  (4)配方法:對(duì)于二次函數(shù)或二次函數(shù)有關(guān)的函數(shù)的值域問(wèn)題可考慮用配方法.

  (5)不等式法求值域:利用基本不等式a+b≥[a,b∈(0,+∞)]可以求某些函數(shù)的值域,不過(guò)應(yīng)注意條件“一正二定三相等”有時(shí)需用到平方等技巧.

  (6)判別式法:把y=f(x)變形為關(guān)于x的一元二次方程,利用“△≥0”求值域.其題型特征是解析式中含有根式或分式.

  (7)利用函數(shù)的單調(diào)性求值域:當(dāng)能確定函數(shù)在其定義域上(或某個(gè)定義域的子集上)的單調(diào)性,可采用單調(diào)性法求出函數(shù)的值域.

  (8)數(shù)形結(jié)合法求函數(shù)的值域:利用函數(shù)所表示的幾何意義,借助于幾何方法或圖象,求出函數(shù)的值域,即以數(shù)形結(jié)合求函數(shù)的值域.

  2、求函數(shù)的最值與值域的區(qū)別和聯(lián)系

  求函數(shù)最值的常用方法和求函數(shù)值域的方法基本上是相同的,事實(shí)上,如果在函數(shù)的值域中存在一個(gè)最小(大)數(shù),這個(gè)數(shù)就是函數(shù)的最小(大)值.因此求函數(shù)的最值與值域,其實(shí)質(zhì)是相同的,只是提問(wèn)的角度不同,因而答題的方式就有所相異.

  如函數(shù)的值域是(0,16],最大值是16,無(wú)最小值.再如函數(shù)的值域是(-∞,-2]∪[2,+∞),但此函數(shù)無(wú)最大值和最小值,只有在改變函數(shù)定義域后,如x>0時(shí),函數(shù)的最小值為2.可見(jiàn)定義域?qū)瘮?shù)的值域或最值的影響.

  3、函數(shù)的最值在實(shí)際問(wèn)題中的應(yīng)用

  函數(shù)的最值的應(yīng)用主要體現(xiàn)在用函數(shù)知識(shí)求解實(shí)際問(wèn)題上,從文字表述上常常表現(xiàn)為“工程造價(jià)最低”,“利潤(rùn)最大”或“面積(體積)最大(最小)”等諸多現(xiàn)實(shí)問(wèn)題上,求解時(shí)要特別關(guān)注實(shí)際意義對(duì)自變量的制約,以便能正確求得最值.